

Traffic Aggregation for Malware Detection

Michael K. Reiter Ting-Fang Yen

December 16, 2007
CMU-CyLab-07-017

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

Traffic Aggregation for Malware Detection

Michael K. Reiter∗† Ting-Fang Yen†

reiter@cs.unc.edu tyen@andrew.cmu.edu

Abstract

Stealthy malware, such as botnets and spyware, are hard to detect because their activities are subtle
and do not disrupt the network, in contrast to DoS attacks and aggressive worms. Stealthy malware,
however, does communicate to exfiltrate data to the attacker, to receive the attacker’s commands, or to
carry out those commands (e.g., send spam). Moreover, since malware rarely infiltrates only a single host
in a large enterprise, these communications should emerge from multiple hosts within coarse temporal
proximity to one another. In this paper, we describe a system called T ĀMD (pronounced “tamed”) with
which an enterprise can identify infected computers within its network by finding new communication
“aggregates” involving multiple internal hosts, i.e., communication flows that share common character-
istics. We describe characteristics for defining aggregates—including flows that communicate with the
same external network, that share similar payload, and/or that involve internal hosts with similar software
platforms—and justify their use in finding infected hosts. We also detail efficient algorithms employed
by TĀMD for identifying such aggregates, and demonstrate a particular configuration of T ĀMD that iden-
tifies new infections for multiple bot and spyware examples with very few false detections, within traces
of traffic recorded at the edge of a university network. This is achieved even when the number of infected
hosts comprise only about 0.0065% of all internal hosts in the network.

1 Introduction

It is clearly in the interest of network administrators to detect computers within their networks that are
infiltrated by spyware or bots. Such stealthy malware can exfiltrate sensitive data to adversaries, or lie in
wait for commands from a bot-master to forward spam or launch denial-of-service attacks, for example.
Unfortunately it is difficult to detect such malware, since by default it does little to arouse suspicion: e.g.,
generally its communications neither consume significant bandwidth nor involve a large number of targets.
While this changes if the bots are enlisted in aggressive scanning for other vulnerable hosts or in denial-of-
service attacks—in which case they can easily be detected using known techniques (e.g., [33, 24])—it would
obviously be better to detect the bots prior to such a disruptive event, in the hopes of averting it. Moreover,
such easily detectable behaviors are uncharacteristic of significant classes of malware, notably spyware.

We hypothesize, however, that even stealthy, previously unseen malware is likely to exhibit communica-
tion that is detectable, if viewed in the right light. First, since emerging malware rarely infects only a single
victim, we expect its characteristic communications, however subtle, to appear roughly coincidentally (e.g.,
within an hour of one another) at multiple hosts in a large network. Second, we expect these communi-
cations to share certain features that differentiate them from other communications that are typical of that

∗University of North Carolina, Chapel Hill, NC, USA
†Carnegie Mellon University, Pittsburgh, PA, USA

1

network. Of course, these two observations may pertain equally well to a variety of communications that
are not induced by malware, and consequently the challenge is to refine these observations so as to be useful
for detecting malware in an operational system.

In this paper we describe such a system, called TĀMD, an abbreviation for “Traffic Aggregation for
Malware Detection”. As its name suggests, TĀMD distills traffic aggregates from the traffic passing the
edge of a network, where each aggregate is defined by certain characteristics that the traffic grouped within
it shares in common. By refining these aggregates to include only traffic that shares multiple relevant
characteristics, and by using past traffic as precedent to justify discarding certain aggregates as normal,
TĀMD constructs a small set of new aggregates (i.e., without previous precedent) that it recommends for
examination by a human analyst. The key to making TĀMD recommend to the human analyst only those
aggregates that represent emerging malware communications is the characteristics on which it aggregates
traffic, which include:

• Common destinations: TĀMD analyzes the networks with which internal hosts communicate, in
order to identify aggregates of communication to busier-than-normal external destinations. Spyware
reporting to the attacker’s site or bot communication to a bot-master (e.g., with IRC, HTTP, or another
protocol) might thus form an aggregate under this classification.

• Similar payload: TĀMD identifies traffic with similar payloads or, more specifically, payloads for
which a type of edit distance (string edit distance matching with moves [7]) is small. Intuitively,
command-and-control traffic between a bot-master and his bots should share significant structure and
hence, we expect, would have a low edit distance between them. Similarly, replicas of spam messages
sent from multiple bots would also have low edit distance, if their bodies are largely the same.

• Common internal-host platforms: TĀMD uses traffic to passively fingerprint platforms of internal
hosts, and forms aggregates of traffic involving internal hosts that share a common platform. Traffic
caused by malware infections that are platform-dependent should form an aggregate by use of this
characteristic.

Alone, each of these methods of forming traffic aggregates would be far too coarse to accurately identify
malware-infected hosts, as legitimate traffic can form aggregates under these characterizations, as well. In
combination, however, they can be quite powerful at extracting aggregates of malware communications. To
demonstrate this, we detail a particular configuration of TĀMD that employs these aggregation techniques
to identify internal hosts infected by malware that reports to a controller site external to the network. Since
botnets have been observed to switch controllers or download updates frequently, as often as every two or
three days [16, 10], each such event gives TĀMD an opportunity to identify these communications. We show
that with traffic generated from real spyware and bot instances, TĀMD was able to reliably extract this traffic
from all traffic passing the edge of a university network, with very few false detections.

In addition to identifying aggregates and ways of combining them to find malware-infected hosts, the
contributions of TĀMD include algorithms for computing these aggregates efficiently. Our algorithms draw
from diverse areas including signal processing, data mining and metric embeddings. We will detail each of
these algorithms here.

2 Related Work

Botnet detection Previous approaches to botnet detection rely on heuristics that assume certain models of
botnet architecture or behavior, such as IRC-based command-and-control [6, 4, 23, 10], the presence of scan-
ning activities, long idle time and short response time for bots compared to humans [29], etc. Karasaridis

2

et al. [16] proposed an approach for identifying botnet controllers by combining heuristics that assume
the use of IRC communication, scanning behavior, and known models of botnet communication. BotH-
unter [12] models all bots as sharing common infection steps—namely target scanning, infection exploit,
binary download and execution, command-and-control channel establishment, and outbound scanning—
and then employs Snort with various malware extensions to raise an alarm when a sufficient subset of these
are detected. Consequently, malware not conforming to this profile (e.g., spyware or bots engineered differ-
ently) would seemingly go undetected by their approach. Ramachandran et al. [32] observed that botmasters
lookup DNS blacklists to determine whether their bots are blacklisted. They thus passively monitor lookups
to a DNS-based blackhole list to identify bots.

We believe our approach to be fundamentally different from the above approaches in the following re-
spect. While these approaches work from models of malware behavior (not unlike signature-based intrusion
detection), our approach simply seeks to identify new aggregates of communication that are not explained
by past behavior on the network being monitored. Like all anomaly-detection approaches, our challenge
is to demonstrate that the number of identified anomalous aggregates is manageable, but it has the poten-
tial to identify a wider range of as-yet-unseen malware. In particular, the assumptions underlying previous
systems present opportunities for attackers to evade these systems by changing the behavior of botnets, and
these systems will fail to detect other types of malware (e.g., spyware) that do not meet these assumptions.

Various prior works on botnet detection use honeypots (e.g., [2, 30]). As honeypots can only approxi-
mately mimic (at best) real user behavior, they may not attract spyware or bots that rely on human action to
infect users’ machines. Our approach, in not requiring a honeypot, places no assumptions about the infec-
tion vector by which attacks occur and whether these vectors present themselves in a honeypot. In doing so,
we hope to make our approach as general as possible.

Techniques The techniques we employ for aggregation, specifically on the basis of external subnets to
which communication occurs, include some drawn from the signal processing domain (e.g., principal com-
ponent analysis (PCA)). While others have drawn from this domain in the detection of network traffic
anomalies, our approach has different goals and hence applies these techniques differently. Coarsely speak-
ing, past approaches extract packet header information, such as the number of bytes or packets transferred
for each flow, counts of TCP flags, etc., in search of volume anomalies like denial-of-service attacks, flash
crowds, or network outages [34, 3, 19]. Lakhina et al. [22] studied the structure of network flows by de-
composing OD flows (flows originating and exiting from the same ingress and egress points in the network)
using PCA. They expressed each OD flow as a linear combination of smaller “eigenflows”, which may be-
long to deterministic periodic trends, short-lived bursts, or noise, in the traffic. Terrell et al. [35] focused
on multi-variate data analysis by grouping network traces into time-series data and selecting features of the
traffic from each time bin, including the number of bytes, packets, flows, and the entropy of the packet size
and port numbers. They applied Singular Value Decomposition (SVD) to the time-series data, and by exam-
ining the low-order components, they were able to detect denial-of-service attacks. In general, transient and
light-weight events would go unnoticed by these approaches, such as spammers that send only a few emails
over the course of a few minutes, as found in a study by Ramachandran et al. [31]. Our work, on the other
hand, is targeted at such lighter-weight events and so employs signal processing techniques differently, not
to mention techniques from other domains (e.g., metric embeddings, passive fingerprinting).

Our use of signal processing techniques was most directly inspired by the approach of Xie et al. [39] on
the Seurat system. This system detects anomalous changes to file-change patterns in hosts within an enter-
prise, as a host-based way of identifying malware infections. Seurat correlates file changes from different
hosts using wavelet analysis and PCA. By filtering out file changes by single hosts and other periodic file

3

update patterns, Seurat detects aggregate anomalous file system events that happen during worm outbreaks,
which might otherwise go unnoticed if only a single host was examined. Our approach to aggregating traffic
by external destination can be viewed as an adaptation of their approach to the networking domain.

Another technique we employ is payload inspection, specifically to aggregate flows based on similar
content. Payload inspection has been applied within methods for detecting worm outbreaks and generat-
ing signatures. Many previous approaches assume that malicious traffic is significantly more frequent or
wide-spread than other traffic, and so the same content will be repeated in many different packets or flows
(e.g., [33, 18, 26, 15, 27]); we do not make this assumption here. Previous approaches to comparing pay-
loads includes matching substrings [37, 26, 15, 25], hashing blocks of the payload [33, 19], or searching for
the longest common substring [21]. Compared to these methods, our edit distance metric is more sensitive
and accurate in cases where parts of the message are simply shifted or replaced. Goebel et al. [10] inspected
packet payload to find IRC bots with formatted nicknames. They observed that often IRC bots have nick-
names with common patterns, such as long random numbers, bot names, or country codes. However, this
approach can detect only bots for which the nickname format is known.

Other tools for intrusion analysis include IDABench (http://idabench.ists.dartmouth.
edu) and the commercial product StealthWatch from Lancope (http://www.lancope.com). ID-
ABench is an intrusion analysis system that allows the network administrator to process observed traffic
by deploying a combination of plug-ins. However, it is not intended to be a intrusion detection system,
and only provides a framework for facilitating the deployment of existing tools, such as tcpdump, ngrep,
Snort, or p0f. StealthWatch monitors all traffic at the network border, checking for policy violations or
signs of anomalous behavior by looking for higher-than-usual traffic volumes. Although this is similar to
our approach of using past traffic as a baseline for identifying busier-than-normal external destinations,
StealthWatch does not refine this information using, e.g., payload or platform aggregation as we do here.
Consequently, StealthWatch is primarily useful for detecting only large-volume anomalies like port scanning
and denial-of-service attacks, in contrast to the subtle behaviors that TĀMD identifies.

3 Defining Aggregates

Given a collection of bi-directional flow records observed at the edge of an enterprise network, our system
aims to identify infected internal hosts by finding communication “aggregates”, which consist of internal
hosts that share common network characteristics. Our observation is that, even though stealthy malware do
not manifest themselves in volume or frequency, they rarely infect only a single victim in the network, and,
if viewed in the right light, the infected hosts exhibit common characteristics that differentiate them from
others typical of that network.

More specifically, TĀMD deploys three aggregation functions that identify hosts sharing the following
characteristics. First, TĀMD identifies aggregates of communications from internal hosts that contribute
to busier-than-usual destinations, as may be the case for botnets switching controllers or downloading up-
dates from designated sites, or for spyware-infected machines attempting to “phone home”. Second, T̄AMD

identifies traffic with payloads for which a type of edit distance is small. This should include command-
and-control traffic between a bot-master and his bots, which is likely to have structured syntax, or replicas
of spam email messages. Third, TĀMD identifies aggregates of traffic involving internal hosts that share a
common platform, in order to capture activities caused by malware infections that are platform-dependent.

The aggregation functions take as input collections of flow records, Λ, and output either groups (aggre-
gates) of internal hosts that share particular properties or a value indicating the amount of similarity between
the input flow record collections. We presume that each flow record λ ∈ Λ includes the IP address of the

4

internal host λ.internal involved in the communication and the external subnet λ.external with which it
communicates. (In our evaluation in Section 5, λ.external is a /24 prefix, for example.) λ also includes
some portion of the payload λ.payload of that communication, packet header fields (port numbers, protocol,
TTL, etc.), and the start and end time of the communication.

3.1 Destination Aggregates

Previous studies show that the destination addresses with which a group of hosts communicates exhibit
pattern and stability over time, both in the amount of traffic sent and in the set-membership of the destina-
tions [1, 20]. Spyware reporting to the attacker’s site, bots communicating with a bot-master or executing
the bot-master’s commands, or other malware activities are thus likely to exhibit communication patterns
outside the norm, i.e., contacting destinations that the internal hosts would not have contacted otherwise.

The destination aggregation function ByDestinationα,τ,ρ(Λ,Λpast) takes as input two sets Λ,Λpast of
communication records. The variables α, τ , and ρ are parameters to the analyses of the functions, as
described later in this section. By analyzing the external addresses with which internal hosts communi-
cate in Λ and Λpast, the function outputs a set SuspiciousSubnets of destination subnets for which there
is a larger number of interactions with the internal network, using Λpast as a baseline. The function also
outputs an integer numAggs and a set of pairs (Aggi,Simi) (1 ≤ i ≤ numAggs), where Aggi and Simi

are sets of internal hosts (IP addresses) that originated traffic in Λ and Λpast, respectively. Intuitively, the
hosts in Aggi contributed to larger-than-usual number of interactions with an external destination subnet in
SuspiciousSubnets, and Simi consists of hosts that previously demonstrated communication patterns similar
to nodes in Aggi, as described later in this section.

At a high level, the set of selected “suspicious” external destinations, SuspiciousSubnets, is determined
after filtering out periodic and regular activities in the communications of the network as represented in the
past traffic Λpast. External destinations observed in Λ that do not follow the norm, i.e., that according to
Λpast are busier than usual or have not been contacted before, are thus output in SuspiciousSubnets.

In the following analyses, each internal host is represented as a binary vector v = (v[1], v[2], · · · , v[k])
for which the dimensionality k is equal to the number of destinations in SuspiciousSubnets. A dimension
v[i] is set to 1 if the internal host communicated with destination i in SuspiciousSubnets (according to
Λ), and 0 otherwise. This vector representation makes it possible to find communication patterns among
the internal hosts in terms of contacted external addresses, through efficient signal processing and machine
learning algorithms.

Below we describe the three processing steps in ByDestinationα,τ,ρ(Λ,Λpast): (i) Trend filtering, which
selects the set of suspicious external destinations; (ii) Dimension reduction, which reduces the dimension-
ality of the above vector v, while preserving most of the information; and (iii) Clustering, which forms
clusters of the vectors (i.e., internal hosts) by the destinations they contact.

Trend Filtering Trend filtering aims to remove regular and periodic communications from Λ, so that
external destinations showing behavior outside the norm are identified. In particular, the “norm” is defined,
for each external destination subnet, by the average number of internal hosts that communicate with that
subnet in various periodic intervals, as recorded in Λpast. For example, periodic patterns, such as Windows
machines connecting to the Windows update server on a weekly basis or banking websites experiencing
traffic spikes on pay day each month, can be inferred from Λpast. The change in activity of a destination
in Λ can then be measured by how much more traffic it received in Λ compared to its average values for
previous time intervals in Λpast.

5

Trend filtering is parameterized by the increase percentage threshold, α, that determines if a particular
external destination is abnormally busy. A destination is selected to be in SuspiciousSubnets if the number
of internal hosts communicating with it, in Λ, exceeds all periodic average values in Λpast by more than α%.

Dimension Reduction As described above, given SuspiciousSubnets, each internal host can be repre-
sented as a k-dimensional binary vector. However, these vectors may be unnecessarily large, and the dimen-
sions may also be redundant or dependent on one another; e.g., retrieving a web page can cause other web
servers to be contacted. To identify such relationships between the destinations and to further dimension
reduction, we apply Principal Component Analysis (PCA).

PCA [14] is a method for analyzing multivariate data. It enables data reduction by transforming the
original vectors onto a new set of orthogonal axes, i.e., principal components, while still preserving most of
the original information. This is done by having each principal component capture as much of the variability
in the data as possible. After PCA, each new axis represents a weighted sum of the original dimensions.

While a vector originally has length equal to the number of suspicious destinations, the transformed vec-
tor after PCA has a dimensionality that is the number of selected principal components, with each dimension
now representing a linear combination of the external destinations. The number of selected principal com-
ponents depends on the amount of variance we want to capture in the data, denoted as the parameter τ . The
more variance to be captured, the more accurate the transformation represents the original data, but, at the
same time, more principal components are needed, increasing the dimensionality.

Clustering PCA reduces the vector dimensionality significantly, after which hosts connecting to the same
combinations of destinations can be identified efficiently through clustering. ByDestinationα,τ,ρ(Λ, Λpast)
forms clusters of the vectors (i.e., internal hosts) whose traffic is present in Λ using a K-means clustering
algorithm [17], which does not require the number of clusters to be known in advance.

1. Randomly select a vector as the first cluster hub. Assign all vectors to this cluster.
2. Select the vector furthest away from its hub as the new cluster hub. Re-assign all vectors to the cluster

whose hub it is closest to.
3. Repeat step 2 until no vector is further from its hub than half of the average hub-hub distance.

The distance metric used for comparing vector distances is Cosine distance, i.e., CosineDist(v1, v2) =
cos−1((v1 • v2)/(|v1||v2|)), for two vectors v1 and v2, where the symbol • is the dot product between the
two vectors, and |v1| is the length of vector v1. Cosine distance is essentially a normalized dot product of
the vectors, where a particular dimension would contribute to the final sum if and only if both vectors have
a nonzero value in that dimension. In our case, each vector represents a particular internal source host, and
each dimension represents a linear combination of destination subnets. Cosine distance thus captures well
the relationship between source hosts based on the common destinations they contacted.

Let numAggs denote the number of clusters from the above K-means algorithm, and let Aggi (i =
1 . . . numAggs) denote the hosts whose vectors comprise the i-th cluster. As such, Aggi is an aggregate
of internal hosts interacting with the same busier-than-usual external subnets in Λ. We then construct a
k-dimensional binary vector for each internal host in Λpast and transform these vectors using the same axes,
i.e., principal components, used to transform the vectors for hosts in Λ. These “old” vectors are then evalu-
ated in terms of their similarity to the aggregates. More specifically, this phase takes a parameter ρ. A host
from Λpast is added to Simi if the vector representing its communications to SuspiciousSubnets is within ρ
times the cluster radius of the hub for Aggi. In this sense, this host is “similar” to those hosts in Aggi. Again,

6

all of SuspiciousSubnets, numAggs and {(Aggi,Simi)}1≤i≤numAggs are output from ByDestinationα,τ,ρ(Λ,
Λpast).

3.2 Payload Aggregates

Payload inspection algorithms for malware detection have previously focused on either modeling byte-
frequency distributions (e.g., [33, 18, 26, 15]), which assumes that malicious traffic should exhibit an observ-
ably different byte-frequency distribution from that of normal traffic, or substring matching (e.g., [37, 25]).
In contrast to these approaches, our measure of payload similarity is edit distance with substring moves,
which we choose because it is capable of capturing syntactic similarities between strings, even if parts of
one string are simply shifted or replaced. To our knowledge, ours is the first work that detects malicious
traffic by comparing (a type of) string edit distance.

For two character strings s1 and s2, the edit distance with substring moves EditDist(s1, s2) is defined as
the number of character insertions, deletions, or substitutions, or substring moves, required to turn s1 into
s2. Given a string s = s[1] · · · s[len(s)], a substring move with parameters i, j, and k transforms s into
s[1] · · · s[i − 1], s[j] · · · s[k − 1], s[i] · · · s[j − 1], s[k] · · · s[len(s)] for some 1 ≤ i ≤ j ≤ k ≤ len(s). For
example, swapping labeled parameters in a parameter list would be a substring move in a command string.

The payload comparison function ByPayloadδEd(Λ,Λ′, distinct) that we introduce for use in Section 4
takes as input two sets Λ,Λ′ of communication records and a boolean distinct, and outputs a value in the
range [0, 1]. It is parameterized by an edit distance threshold δEd that determines if two communication
records λ, λ′ are “close enough”, i.e., if EditDist(λ.payload, λ′.payload) ≤ δEd. Its output indicates from
among all record pairs (λ, λ′) ∈ Λ × Λ′ such that λ.external = λ′.external (i.e., that involve the same
external subnet), the (approximate, see below) fraction for which EditDist(λ.payload, λ′.payload) ≤ δEd. If
distinct is true, only pairs (λ, λ′) such that λ.internal �= λ′.internal are considered; otherwise, all such pairs
are considered.

Since Λ and Λ′ can be large, computing ByPayloadδEd(Λ,Λ′, distinct) by computing EditDist(λ.payload,
λ′.payload) for each relevant (λ, λ′) pair individually can be prohibitively expensive, i.e., requiring time pro-
portional to |Λ| · |Λ′|, where |Λ| denotes the cardinality of Λ. A contribution of our work is an algorithm for
approximating the fraction of relevant record pairs (λ, λ′) that satisfy EditDist(λ.payload, λ′.payload) ≤
δEd in time roughly proportional to |Λ| + |Λ′| if δEd is small.

To perform this approximation, we first embed the EditDist metric within L1 distance L1Dist, where for
two vectors v1 = v1[1 . . . m], v2 = v2[1 . . . m], L1Dist(v1, v2) =

∑m
i=1 |v1[i]−v2[i]|. That is, we transform

each λ.payload into a vector vλ so that if EditDist(λ.payload, λ′.payload) ≤ δEd then L1Dist(vλ, vλ′) ≤ δL1

for a known value δL1. We do so using an algorithm due to Cormode et al. [7] called Edit Sensitive Parsing
(ESP). For this algorithm, the ratio of δL1 over δEd is bounded by O(log n log∗ n), where n is the length of
λ.payload.1 In our evaluation in Section 5, n = 64 and we set δL1 = δEd · log10 64.

The embedding of EditDist into L1Dist is essential to our efficiency gains, since it enables us to utilize
an approximate nearest-neighbor algorithm called Locality Sensitive Hashing (LSH) [9] to find vectors (and
hence payload strings) near one another in terms of L1Dist (and hence in terms of EditDist), in time roughly
proportional to |Λ| + |Λ′|. Briefly, LSH hashes each vector using several randomly selected hash functions;
each hash function maps the vector to a bucket. LSH ensures that if L1Dist(v1, v2) ≤ δL1, then the buckets to
which v1 and v2 are hashed will overlap with high probability (and will overlap with much lower probability
if not), where probabilities are taken with respect to the random selection of the hash functions. Conse-

1log∗ n denotes the iterated logarithm of n, i.e., the number of times the logarithm must be iteratively applied before the result
is less than or equal to one.

7

quently, we hash vλ for each λ ∈ Λ∪Λ′, and explicitly confirm that EditDist(λ.payload, λ′.payload) ≤ δEd

only for pairs (λ, λ′) for which vλ and vλ′ hash to at least one overlapping bucket.
While edit distance may not be meaningful for encrypted messages, we can generalize the payload

comparison function to define encrypted payload (e.g., detected by its entropy) as “similar”. Exploring
payload aggregation using other metrics is part of ongoing work; see Section 6.

3.3 Platform Aggregates

Forming traffic aggregates based on platform can be useful in identifying malware infections that are plat-
form dependent. That is, suspicious traffic common to a collection of hosts becomes even more suspicious
if the hosts share a common software platform.

Much host platform information can be inferred from traffic observed passively. Passive tools, unlike
active fingerprinting tools like Nmap (http://insecure.org), do not probe hosts, but rather listen
silently. The most comprehensive passive operating system fingerprinting tool of which we are aware is p0f
(http://lcamtuf.coredump.cx/p0f.shtml), which extracts various IP and TCP header fields
from SYN packets and uses a rule-based comparison algorithm. However, p0f cannot be applied to traffic
traces in the flow-record format available to us (see Section 5), since most individual packet information
(including for SYN packets) is not retained.

At the time of this writing, TĀMD employs two simple heuristics for fingerprinting internal host operat-
ing systems passively. The first employs time-to-live (TTL) fields witnessed at the network border in packets
from internal hosts. It is well-known that in many cases, different operating system types select different ini-
tial TTL values (e.g., see http://secfr.nerim.net/docs/fingerprint/en/ttl default.
html). With a detailed map of the internal network, the observed TTL values can be used to infer the
exact initial TTL value and so narrow the possibilities for operating system the host is running. However,
a detailed map is typically unnecessary, as routes in most enterprise networks are sufficiently short that
witnessing TTLs of packets from internal hosts as those packets leave the network enables the initial TTL
values to be inferred well enough.

The second heuristic employed in TĀMD watches for host communications characteristic of a particu-
lar operating system platform. For example, Windows machines connect to the Microsoft time server by
default during system boot for time sychronization, and the FreeBSD packages FTP server is more likely
to be accessed by FreeBSD machines to install software updates. Once characteristic communications for
different platforms are identified, TĀMD can monitor for these to learn the platform of an internal host.

There are at least two limitations of such passive fingerprinting approaches for our purposes. First,
DHCP-assigned IP addresses can be assigned to hosts with different operating systems over time, leading
to inconsistent indications of the host operating system associated with an IP address. This suggests that
TĀMD should weigh recent indications more heavily than older (and hence potentially stale) indications.
Second, a machine with a compromised kernel could, in theory, alter its behavior to masquerade as a dif-
ferent operating system. In the absence of a possible IP address reassignment (e.g., for address ranges not
assigned via DHCP), such a shift in behavior should itself be detectable evidence that a compromise may
have occurred. In general, however, this limitation is intrinsic to any fingerprinting technique, passive or
active, except those based on attestations from trusted hardware (e.g., TCG’s Trusted Platform Module,
https://www.trustedcomputinggroup.org/groups/tpm/). While we are unaware of mal-
ware that employs such a masquerading strategy, should platform-based aggregation for malware detection
become commonplace, such systems would presumably need to migrate to attestation-based platform identi-
fication as it matures, in order to detect kernel-level compromises. User-level compromise should not affect
platform-based aggregation using conventional fingerprinting techniques, however.

8

FindSuspiciousAggregates(Λ, Λpast)

100: SuspiciousAggregates ← ∅
101: (SuspiciousSubnets, numAggs, {(Aggi, Simi)}1≤i≤numAggs)← ByDestinationα,τ,ρ(Λ, Λpast)

/∗ Form aggregates by external subnet ∗/
102: for i ∈ 1 . . . numAggs do
103: Λi ← {λ ∈ Λ : λ.internal ∈ Aggi} /∗ Traffic from hosts in Aggi ∗/
104: Λsusp

i ← {λ ∈ Λi : λ.external ∈ SuspiciousSubnets} /∗ Traffic from hosts in Aggi to suspicious subnets ∗/
105: Λsim

past ← {λ ∈ Λpast : λ.internal ∈ Simi ∧ λ.external ∈ SuspiciousSubnets}
/∗ Past traffic from hosts in Simi to suspicious subnets ∗/

106: if ByPayloadδEd (Λsim
past, Λ

susp
i , false) = 0 then /∗ Keep if no similar past traffic to same external subnet ∗/

107: if ByPayloadδEd (Λsusp
i , Λsusp

i , true) > 0.2 then /∗ Keep if traffic to same external subnet is self-similar ∗/
108: if ByPlatform(Λi) > 0.5 then /∗ Keep if most of aggregate consists of one platform ∗/
109: SuspiciousAggregates ← SuspiciousAggregates ∪ {Aggi}
110: return SuspiciousAggregates

Figure 1: The function used to find suspicious aggregates in the example construction given in Section 4.
ByDestinationα,τ,ρ (line 101), ByPayloadδEd (lines 106, 107), and ByPlatform (line 108) are defined in
Sections 3.1, 3.2 and 3.3, respectively.

Presently TĀMD uses the aforementioned heuristics based on TTL values and communication with char-
acteristic sites to identify platforms. For use in Section 4, we embody this in a function ByPlatform(Λ) that
returns the largest fraction of internal hosts in Λ (i.e., among the hosts {λ.internal : λ ∈ Λ}) that can be
identified as having the same operating system, based on these heuristics applied to the traffic records Λ.

4 Example Configuration

In this section, we detail a configuration of TĀMD that identifies internal hosts infected by malware by
employing the functions described in Section 3. This configuration identifies platform-dependent malware
infections that report to common sites, e.g., IRC channels for receiving commands, public servers for down-
loading binaries, denial-of-service victims to attack, or database servers for uploading stolen information, as
is typical of most bots and spyware. This configuration is based on several observations about such malware:

O1. For even moderately aggressive malware, it is rarely the case that only a single victim exists in a
large enterprise network, and so we hypothesize that stealthy malware is likely to generate traffic that
appears within the same, coarse window of time (e.g., within the same hour) from multiple infected
hosts. Moreover, we would expect that the controller site is located in a subnet that would not be a
common one with which benign hosts interact (though we do not presume that benign hosts never
interact with it). As such, malware interacting with the controller site should generate a noticeable
increase in the number of interactions with the controller’s subnet in that window of time.

O2. We expect that the contents of the malware communications would be syntactically unlike the contents
of previous communication with that subnet (assuming these infections are new, as would be the case
in the emergence of a new malware strain). We also expect that the multiple instances of the malware
communication to the controller site would themselves be similar.

O3. In the case of platform-dependent malware, the malware communications to the controller site will
involve internal hosts all having the same host platform.

Using these observations, we have assembled the aggregation functions described in Section 3 into an al-
gorithm FindSuspiciousAggregates to identify such malware infections, shown in Figure 1. The input to this

9

function is a set Λ of traffic records observed in a fixed time interval (e.g., one hour) at the border of the net-
work, and a set Λpast of records previously observed at the border of the network. FindSuspiciousAggregates
assembles and returns (in line 110) a set SuspiciousAggregates comprised of suspicious aggregates, where
each aggregate is a set of internal hosts (IP addresses) that is suspected of being infected by malware.

FindSuspiciousAggregates first exploits observation O1, using ByDestinationα,τ,ρ from Section 3.1
to find suspicious external subnets SuspiciousSubnets responsible for noticeably greater communication
with the monitored network than in the past, and to find aggregates {Aggi}1≤i≤numAggs , each of which
includes internal hosts that interacted with one or more of these subnets. In line with observation O2,
FindSuspiciousAggregates then compares the payloads of communications with those suspicious subnets to
past communications with those subnets by hosts with similar communication patterns, i.e., hosts in Simi.
Each aggregate Aggi for which this communication does not match this previous communication to those
subnets (line 106) remains in consideration. Each such aggregate is then tested in line 107 to determine if
distinct hosts (distinct = true) in the aggregate communicate with suspicious subnets using similar pay-
load. Finally, as motivated by observation O3, for each aggregate that has survived these tests, the platforms
of the hosts in the aggregate are inferred to the extent possible using ByPlatform and, if the aggregate is
adequately homogenous (line 108), then it is added to SuspiciousAggregates (line 109).

There are numerous constants in Figure 1 that we have chosen on the basis of our evaluation that we will
present in Section 5. These constants include α = 150%, τ = 90%, and ρ = 20 for ByDestinationα,τ,ρ, 0.2
in line 107 and 0.5 in line 108, and the choice to eliminate aggregates as aggressively as possible in line 106,
i.e., whenever ByPayloadδEd(Λsim

past,Λ
susp
i , false) > 0. In addition, as we will describe in Section 5, the data

on which we perform our evaluation includes 64 bytes of payload per record λ, for which we found δEd = 5
to be an effective value. However, we emphasize that all of these constants can be adjusted in order to make
this configuration of TĀMD more conservative or liberal in its selection of suspicious aggregates, and we
plan to continue evaluation of the alternatives in ongoing work. That said, in Section 5, we show that with
traffic generated from real spyware and bot instances, this configuration of TĀMD was able to reliably extract
malware traffic from all traffic passing the edge of our university network with very few false detections.
This reliability is achieved even in tests where the number of simulated infected hosts comprise only about
0.0065% of the total number of internal hosts in the network, calculated as the maximum number of internal
IP addresses observed communicating in any one hour period during our data collection (see Section 5).

5 Evaluation

We present an evaluation of the particular configuration of TĀMD described in Section 4, using traffic
from real spyware and bot instances, which are overlayed onto flow records recorded at the edge of the
Carnegie Mellon campus network. The performance of TĀMD as observed in this evaluation is described in
Appendix C.

5.1 Data collection

Our network traffic traces were obtained from the edge routers of the Carnegie Mellon campus network,
which consists of two /16 subnets. The packets are organized into bi-directional flow records by Argus
(Audit Record Generation and Utilization System, http://www.qosient.com/argus), which is a
real time flow monitor based on the RTFM flow model [5, 13]. Argus inspects each packet and groups
together those with the same attribute values into one bi-directional record. In particular, TCP and UDP
flows are identified by the 5-tuple (source IP address, destination IP address, source port, destination port,

10

protocol)2, and packets in both directions are recorded as a summary of the communication, namely, an
Argus flow record.

IP Header TCP Header Flow Attribute
Source IP Source Port Byte Count
Destination IP Destination Port Packet Count
Protocol Sequence Number Payload (64 bytes)
TTL Window Size

Table 1: Extracted Flow Fields

The fields extracted from Argus
records are listed in Table 1. The
rate of the traffic from the edge of the
CMU campus network is about 5000
flow records per second. The traces were
collected for six hours daily, from 9am
until 3pm.

In our experiments, we assumed that
the recorded campus traffic was benign, and so for testing we additionally generated malicious traffic using
four instances of malware collected from the internet: Bagle, IRCbot, Mybot, and Sdbot. The characteristics
of these malware instances are described in Appendix A, as is our method for collecting flows from them.
For testing, we then overlayed flows recorded from these malware instances onto one hour of our recorded
campus network traffic, and assigned the malware traffic to originate from randomly selected, supposedly
benign, internal hosts, observed to be active during that hour. This makes our testing scenario much more
realistic, since the internal hosts to be identified still exhibit their normal connection patterns, in addition to
subtle malware activities, as is common for stealthy malware.

We overlayed onto each hour of the recorded campus network traffic eight instances of Bagle, two
instances of IRCbot, five instances of Mybot, or five instances of Sdbot. These numbers of instances were
chosen to represent a very small fraction of the total campus hosts, specifically at most 0.0065% based upon
the number of campus hosts (IP addresses) observed sending traffic in the busiest hour.

In our initial tests, we found that these malware-infected hosts were obscured by certain apparently-
benign hosts with highly unusual behavior, which turned out to be PlanetLab (http://www.planet-lab.
org) and Tor (http://tor.eff.org) nodes. The experience of identifying these hosts and their ex-
clusion from our dataset for the experiments reported in Section 5.2 is described in Appendix B.

5.2 Detecting Malware

As described in Section 5.1, the particular configuration of TĀMD was given all traffic collected at the edge
of the Carnegie Mellon campus network in hourly batches. For each malware, we overlayed the malware
traffic onto one hour in the campus data, assigning the traffic to originate from randomly selected internal
hosts observed to be active during that period. The same analysis steps are repeated for each hour over an
entire week in March 2007. The number of infected hosts for each experiment varied from 2 to 8, while the
maximum number of internal hosts observed communicating in any one hour period was more than 30,000.

The granularity of external destinations was set to be /24 subnets. While the communication records
from the current hour was given to FindSuspiciousAggregates as Λ, the set Λpast was selected from commu-
nication records in the past that represented the general trend and the periodicity in the traffic. In particular,
for the purpose of our experiments, Λpast consisted of traffic from, in reference to the time frame for Λ, (i)
the same hour from the same days of the week, (ii) the same hour from the same days of the month, and (iii)
all hours from the previous two days.

In all experiments, TĀMD was able to identify the infected hosts with very few false positives. Figure 2
shows the number of aggregates that our particular configuration of TĀMD yielded after applying each

2Since Argus records are bi-directional, the source and destination IP addresses are swappable in the logic that matches packets
to flows. However, the source IP address in the record is set to the IP address of the host that initiated the connection.

11

aggregation function to the network traffic, for each malware instance, averaged over all test hours. We
assume that the campus traffic represented normal, benign communications, and so in each experiment
involving each malware instance, the number of true positives (i.e., the actual malware aggregates) should
then always be one, corresponding to the group of randomly selected internal hosts to which we assigned the
malware traffic. Figure 2 shows that the number of aggregates is reduced after each aggregation function.
The single aggregate consisting solely of infected hosts is always identified, in every malware experiment.

Bagle IRCbot Mybot Sdbot
1. ByDestinationα,τ,ρ(Λ, Λpast) μ 69.23 101.90 69.38 74.08

(line 101) σ 42.06 34.02 40.76 43.87
2. ByPayloadδEd (Λsim

past, Λ
susp
i , false) = 0 μ 59.15 89.20 61.13 63.46

(line 106) σ 32.48 27.77 31.60 33.52
3. ByPayloadδEd (Λsusp

i , Λsusp
i , true) > 0.2 μ 2.77 3.30 3.00 2.92

(line 107) σ 2.17 2.01 2.09 2.22
4. ByPlatform(Λi) > 0.5 μ 1.46 2.2 1.81 1.62

(line 108) σ 0.66 1.62 1.28 0.96

1 2 3 4
0

20

40

60

80

100

120

Aggregation Phases

N
um

be
r

of
 A

gg
re

ga
te

s

Bagle
IRCbot
Mybot
Sdbot

Figure 2: Aggregates remaining after each function in Figure 1 (μ = mean, σ = std. dev.)

5.3 Benign Aggregates

As indicated in Figure 2, our methodology detected a small number of apparently “benign” aggregates
(about 0.7 per hour, on average) in addition to the one aggregate of infected hosts that we overlayed on the
trace. We found that some of these same benign aggregates regularly appeared for that hour of input data,
across different malware experiments. Further investigation of these aggregates, based on the 64 bytes of
flow payload available to us, port numbers, and protocol field (for privacy reasons, the IP addresses were
anonymized), showed that these aggregates included ICMP probes, SMTP connection timeout messages,
and advertising-related HTTP requests; several of these suggest that additional investigation may be war-
ranted. Others included peer-to-peer (P2P) file transfers and connections to online game servers. All of
these aggregates consisted of internal hosts contacting rare sites, and often consisted of less than five hosts
sharing one or two common destination subnets.

In theory, a group of internal hosts visiting a new popular website (i.e., the “slashdot” effect) could also
form an aggregate. However, it is unlikely that all of the hosts would come from the same platform, and in
our experiments, we believe we saw very few such false detections. While we consider these results to be
promising, our approach is a significant first step that we (and, we hope, others) will build upon to reduce
false detections further.

6 Discussion and Ongoing Work

Approaches by which malware writers might attempt to avoid detection by our techniques include encrypting
their malware traffic, so that our payload comparisons will be ineffective. To accommodate encryption,
our techniques can be generalized to define encrypted content (which itself is generally easy to detect) as
“similar”; we are exploring the impact of this adaptation in ongoing work. Malware writers could go further
and have their malware communicate steganographically, though at the cost of greater sophistication and

12

lower bandwidth. Detecting steganographic communication is itself an active area of research (e.g., [28])
from which TĀMD could benefit.

A second way that malware writers could try to avoid detection by TĀMD is with alternative bot-
net architectures. Although the vast majority of spyware and botnets found today use a centralized IRC
command-and-control server, other botnet architectures have been reported, such as P2P botnets (Phatbot3,
Trojan.Peacomm bot [11], Sinit P2P trojan4) or HTTP-based botnets (Clickbot.A [8]). Still others have been
proposed, such as hybrid P2P and centralized botnets [36, 38].

Even among these alternative architectures, a large number exhibit characteristics that we believe should
be detectable via FindSuspiciousAggregates in Section 4. For example, Trojan.Peacomm bots, while using
a P2P network to transfer addresses of compromised web servers among them, still connect to these web
servers to download malicious executables for sending spam or performing DoS attacks. This activity of
collectively contacting web servers matches the behavior that our techniques successfully detected in our
evaluations. The same detection method can also be applied to HTTP-based bots, such as Clickbot.A [8],
which commit click frauds by having bots connect to a compromised web server for a list of websites and
search keywords, or for a URL to download updated bot versions. Vogt et al. [36] suggested a “super-
botnet”, where the botnet is composed of individual smaller centralized botnets, and the controllers from
each smaller botnet peer together in a P2P network. Since the individual smaller botnets still use a central-
ized architecture, this should be still be detectable via our techniques. Wang et al. [38] proposed a hybrid
P2P botnet where each bot maintains its own peer list and polls other bots periodically for new commands.
However, in order to monitor the IP address and resources of each individual bot, the botnet supports a
command by which the botmaster can solicit all bots to report to a specific compromised server. Again, this
behavior should be detectable by FindSuspiciousAggregates.

That said, some P2P bots avoid contacting a common server for the transfer executables or other tasks,
such as Phatbot and the Sinit trojan. While Phatbots find peers by registering themselves as Gnutella clients,
the Sinit trojan sends out random probes for peer discovery. In both cases, forming aggregates based on
payload similarity should remain effective, provided that similarity is generalized as described above to
accommodate encrypted traffic (which Phatbot utilizes). Similarly, platform-based aggregation should also
be effective, as both are platform-dependent. We are evaluating these directions in ongoing work, as well as
alternative aggregation methods to help identify these types of malware.

7 Conclusion

In this paper, we presented TĀMD, a system that detects stealthy malware within a network by identifying in-
ternal hosts that share common network characteristics. TĀMD employs three aggregation functions to group
hosts based on the following characteristics. First, the destination aggregation function, ByDestinationα,τ,ρ,
forms aggregates of internal hosts that contact the same combination of busier-than-usual external desti-
nations. A binary vector is formed for each internal host, with each dimension representing one of the
selected external destinations. The vectors are processed by PCA for dimension reduction, and clustered by
K-means clustering. New clusters are selected as those that do not conform to preceding communication
patterns. Second, the payload aggregation function, ByPayloadδEd , identifies communications with similar
payloads in terms of a type of edit distance. This is done by first embedding the payload strings into vectors
in L1 space, and then finding close vectors by an approximate nearest-neighbor algorithm. Third, the plat-
form aggregation function, ByPlatform, forms aggregates that involve hosts running on common platforms,

3See http://www.secureworks.com/research/threats/phatbot.
4See http://www.secureworks.com/research/threats/sinit.

13

as inferred using TTL values or platform-specific sites to which they connect.
We detailed a configuration of TĀMD that employs these functions in combination to detect platform-

dependent malware infections that report to common sites. A common site might be an IRC channel for
receiving commands, a public webserver for downloading binaries, a denial-of-service victim they are in-
structed to attack, or a database server for uploading stolen information, as is typical of most bots and
spyware. Our experiments showed that, with traffic generated from real spyware and bot instances, this
configuration of TĀMD reliably extracted malware traffic from all traffic passing the edge of our univer-
sity network, with very few false detections. This is achieved even in tests where the number of simulated
infected hosts comprised only about 0.0065% of all internal hosts in the network.

Acknowledgements

We are grateful to Moheeb Rajab and other members of the Johns Hopkins Honeynet Project (http:
//hinrg.cs.jhu.edu/jhuhoneynet/) for providing the malware binaries that we used in our eval-
uations. We are also grateful to Chas Difatta, Mark Poepping and other members of the EDDY Initiative
(http://www.cmu.edu/eddy/) for facilitating access to the network traffic records from Carnegie
Mellon University used in this research. This research was supported in part by NSF awards 0326472 and
0433540.

References

[1] W. Aiello, C. Kalmanek, P. McDaniel, S. Sen, O. Spatscheck, and J. Van der Merwe. Analysis of communities
of interest in data networks. In Proceedings of Passive and Active Measurement Workshop, 2005.

[2] P. Bächer, T. Holz, M. Kötter, and G. Wicherski. Know your enemy: Tracking botnets. Technical report, The
Honeynet Project and Research Alliance, 2005.

[3] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis of network traffic anomalies. In Proceedings of
ACM SIGCOMM Internet Measurement Workshop (IMW), 2002.

[4] J. R. Binkley and S. Singh. An algorithm for anomaly-based botnet detection. In Proceedings of the Workshop
on Steps to Reducing Unwanted Traffic on the Internet (SRUTI), 2006.

[5] N. Brownlee, C. Mills, and G. Ruth. Traffic flow measurement: Architecture. RFC 2722, 1999.

[6] E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup: Understanding, detecting, and disrupting
botnets. In Proceedings of the Workshop on Steps to Reducing Unwanted Traffic on the Internet (SRUTI), 2005.

[7] G. Cormode and S. M. Muthukrishnan. The string edit distance matching problem with moves. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms, 2002.

[8] N. Daswani, M. Stoppelman, the Google Click Quality, and Security Teams. The anatomy of clickbot.A. In
Proceedings of the 1st Workshop on Hot Topics in Understanding Botnets (HotBots), 2007.

[9] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the Symposium on Computational Geometry, 2004.

[10] J. Goebel and T. Holz. Rishi: Identify bot contaminated hosts by IRC nickname evaluation. In Proceedings of
the 1st Workshop on Hot Topics in Understanding Botnets (HotBots), 2007.

[11] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon. Peer-to-peer botnets: Overview and case
study. In Proceedings of the 1st Workshop on Hot Topics in Understanding Botnets (HotBots), 2007.

[12] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter: Detecting Malware Infection Through
IDS-Driven Dialog Correlation. In Proceedings of the USENIX Security Symposium, 2007.

14

[13] S. Handelman, S. Stibler, N. Brownlee, and G. Ruth. New attributes for traffic flow measurement. RFC 2724,
1999.

[14] I. T. Jolliffe. Principal Component Analysis. Spring-Verlag, 1986.

[15] V. Karamcheti, D. Geiger, Z. Kedem, and S. M. Muthukrishnan. Detecting malicious network traffic using
inverse distributions of packet contents. In Proceedings of the ACM SIGCOMM Workshop on Mining Network
Data (MineNet), 2005.

[16] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet detection and characterization. In Proceedings of
the 1st Workshop on Hot Topics in Understanding Botnets (HotBots), 2007.

[17] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data. An Introduction to Cluster Analysis. Wiley, 1990.

[18] H. Kim and B. Karp. Autograph: Toward automated, distributed worm signature detection. In Proceedings of
the USENIX Security Symposium, 2004.

[19] S. S. Kim, A. L. N. Reddy, and M. Vannucci. Detecting traffic anomalies using discrete wavelet transform. In
Proceedings of the International Conference on Information Networking (ICOIN), 2004.

[20] E. Kohler, J. Li, V. Paxson, and S. Shenker. Observed structure of addresses in IP traffic. IEEE/ACM Transactions
on Networking, 14(6), 2006.

[21] C. Kreibich and J. Crowcroft. Honeycomb - creating intrusion detection signatures using honeypots. In Proceed-
ings of the ACM SIGCOMM Workshop on Hop Topics in Networks (HotNets), 2003.

[22] A. Lakhina, K. Papagiannaki, and M. Crovella. Structural analysis of network traffic flows. In Proceedings of
ACM SIGMETRICS/Performance, 2004.

[23] C. Livadas, B. Walsh, D. Lapsley, and T. Strayer. Using machine learning techniques to identify botnet traffic.
In Proceedings of the IEEE LCN Workshop on Network Security (WoNS), 2006.

[24] D. Moore, G. M. Voelker, and S. Savage. Inferring internet denial-of-service activity. In Proceedings of the
USENIX Security Symposium, 2001.

[25] J. Newsome, B. Karp, and D. Song. Polygraph: Automatic signature generation for polymorphic worms. In
IEEE Security and Privacy Symposium, 2005.

[26] J. J. Parekh, K. Wang, and S. J. Stolfo. Privacy-preserving payload-based correlation for accurate malicious
traffic detection. In Proceedings of the ACM SIGCOMM Workshop on Large Scale Attack Defense, 2006.

[27] R. Perdisci, G. Gu, and W. Lee. Using an ensemble of one-class SVM classifiers to harden payload-based
anomaly detection systems. In Proceedings of the International Conference on Data Mining (ICDM), 2006.

[28] N. Provos and P. Honeyman. Detecting steganographic content on the Internet. In Proceedings of the 2002 ISOC
Network and Distributed System Security Symposium, February 2002.

[29] S. Racine. Analysis of Internet Relay Chat Usage by DDoS Zombies. Master’s thesis, Swiss Federal Institute of
Technology Zurich, 2004.

[30] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted approach to understanding the botnet phe-
nomenon. In ACM SIGCOMM/USENIX Internet Measurement Conference (IMC), 2006.

[31] A. Ramachandran and N. Feamster. Understanding the network-level behavior of spammers. In Proceedings of
ACM SIGCOMM, 2006.

[32] A. Ramachandran, N. Feamster, and D. Dagon. Revealing botnet membership using DNSBL counter-
intelligence. In Proceedings of the Workshop on Steps to Reducing Unwanted Traffic on the Internet (SRUTI),
2006.

[33] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting. In Proceedings of the Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2004.

15

[34] C. Taylor and J. Alves-Foss. NATE - network analysis of anomalous traffic events, a low-cost approach. In
Proceedings of the New Security Paradigms Workshop (NSPW), 2001.

[35] J. Terrell, L. Zhang, Z. Zhu, K. Jeffay, H. Shen, A. Nobel, and F. Donelson Smith. Multivariate SVD analyses
for network anomaly detection. In Poster Proceedings of ACM SIGCOMM, 2005.

[36] R. Vogt, J. Aycock, and Jr. M. J. Jacobson. Army of botnets. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2007.

[37] K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A content anomaly detector resistant to mimicry attack. In
Proceedings of the 9th International Symposium on Recent Advances in Intrusion Detection(RAID), 2006.

[38] P. Wang, S. Sparks, and C. C. Zou. An advanced hybrid peer-to-peer botnet. In Proceedings of the 1st Workshop
on Hot Topics in Understanding Botnets (HotBots), 2007.

[39] Y. Xie, H. Kim, D. R. O’Hallaron, M. K. Reiter, and H. Zhang. Seurat: A pointillist approach to anomaly
detection. In Proceedings of the 7th International Symposium on Recent Advances in Intrusion Detection (RAID),
2004.

16

A Malware Instances

For our testing described in Section 5, traffic from four malware instances was collected using virtual ma-
chine hosts infected with each malware. The virtual hosts were all running the Windows XP Professional
operating system with the same VMWare image file. Each run of traffic collection is one hour long.

Bagle5 is spyware that, on execution, runs as a background process and attempts to download other
malicious executables from various sites, while generating pop-up windows and hijacking the web browser
to advertising websites. As with other types of spyware and adware, Bagle initiates connections to numerous
destinations that are set up to exclusively host advertisements or other malicious content. We collected Bagle
traffic by simultaneously running eight instances of Windows XP virtual machine hosts infected with Bagle.

IRCbot6 is a backdoor trojan that connects to an IRC server and waits for commands from the attacker.
In addition, after successfully connecting to the command-and-control center, the bot downloads an update
executable from a designated webserver, and goes on to scan the local /16 subnet attacking other machines
with the LSASS vulnerability on port 4457 and the NetBIOS vulnerability on port 1398. We collected traffic
from two instances of IRCbot running on two Windows XP virtual machine hosts.

Mybot9 is spyware, a worm, and a bot that connects to an IRC server to wait for commands, and also
records keystrokes and steals other personal information on the victim host. This malware is especially
subtle in its communications. When it is only waiting for commands on the IRC server, the bot initiates
one connection every 90 seconds, in the form of IRC PING/PONG messages. In the hour of our traffic
collection, Mybot simply waited for commands on the IRC channel, and its only outbound connections
were these PING/PONG messages. We collected traffic for five Mybot instances.

Sdbot10 is a trojan and a bot that opens a back door to connect to an IRC server. Similar to Mybot,
when it is waiting for commands from the attacker, Sdbot only makes outbound connections once every
90 seconds, in the form of IRC PING/PONG messages. We collected Sdbot traffic from simultaneously
running five instances of Windows XP virtual machine hosts infected with this malware.

B Outlier Hosts

In the early stages of our analysis described in Section 5, we found that often TĀMD failed to detect the
malware-laden hosts, but rather identified other internal hosts as more symptomatic of malware, instead.
Upon further inspection, we identified the internal hosts that resulted in these false alarms: PlanetLab nodes
(http://www.planet-lab.org) and a Tor node (http://tor.eff.org).

In the case of PlanetLab nodes, we noticed that during the destination aggregation function, the vectors
after PCA analysis often had very low dimensionality, e.g., two, where two principal components were able
to cover over 90% of the data variance. Clustering these vectors resulted in a few outliers forming their own
individual clusters, unlike any of the other vectors in Λ (i.e., the “new vectors”), or even those from Λpast

(the “old vectors”). This is shown in Figure 3. The two axes correspond to the top two principal components
on which the original data is projected. The outliers were found to be PlanetLab nodes, which, being a
development and testing platform, exhibit behavior deviating from other hosts. Their existence was also the
reason why PCA analysis was able to reduce the vector dimensionality down to only two, since PlanetLab

5See http://www.trendmicro.com/vinfo/virusencyclo.
6See http://www.symantec.com/enterprise/security response/threatexplorer/threats.jsp.
7See http://www.microsoft.com/technet/security/Bulletin/MS04-044.mspx.
8See http://msdn2.microsoft.com/en-us/library/ms913275.aspx.
9See http://www.sophos.com/security/analyses/w32rbotxf.html.

10See http://www.symantec.com/enterprise/security response/threatexplorer/threats.jsp.

17

nodes’ behavior is so different from other hosts that only two principal components were needed to capture
most of the data variance.

−200 0 200 400 600 800 1000 1200
−400

−200

0

200

400

600

800

1000

1200

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

Clustering Results

Old Vectors
New Vectors
New Vector Cluster Hubs

Figure 3: Clustering results after dimension reduction
by PCA. The three outliers were found to be Planet-
Lab nodes.

In another example from experiments involv-
ing the Bagel trojan spyware, we noticed that even
though TĀMD was able to form a final aggregate
containing all spyware traffic and spyware traffic
only, at times it also combined another suppos-
edly benign host into the spyware-hosts aggregate,
both in the destination aggregation function and
the payload aggregation function. Similar investi-
gations revealed that this additional node is a Tor
router inside the campus network. Tor offers online
anonymity by routing packets over random routes
between Tor servers so that the source and destina-
tion of the packet is obfuscated. Because the traffic
comes from different anonymous hosts, it is possi-
ble that, even though the Tor router itself is not in-
fected, another host routing traffic through the Tor
node may be a spyware victim.

For the rest of this work, we removed the Plan-
etLab and Tor nodes from our analysis.

C Performance

The top half of Table 2 shows the run times in seconds for each aggregation function and for each mal-
ware instance, averaged over the week’s worth of traffic (in one-hour intervals) we used to performed our
experiments. In our present implementation of TĀMD, ByDestinationα,τ,ρ is implemented in Matlab, and
ByPayloadδEd and ByPlatform are implemented in C. For the numbers reported in Table 2, ByDestinationα,τ,ρ

was run on a PC with a Pentium IV 3.2 GHz processor and 3 GB of RAM, and ByPayloadδEd and ByPlatform
were run on a Dell PowerEdge server with dual core 3 GHz processors and 4 GB of RAM.

The running times of the aggregation functions depend on several factors, including the number of ex-
ternal destinations identified as suspicious (i.e., SuspiciousSubnets as computed by ByDestinationα,τ,ρ) and
the number of “old” vectors from Λpast that represent communication to one of those suspicious destinations;
averages for these numbers are also listed in Table 2. The amount of traffic in Λpast is especially critical
to the performance of the destination and payload aggregation functions, ByDestinationα,τ,ρ(Λ,Λpast) and
ByPayloadδEd(Λsim

past,Λ
susp
i), since both of them access significant amounts of historical data (i.e., Λpast and

Λsim
past) to define the “normal” behavior for this network. While the implementation of TĀMD is not yet op-

timized, retrieving historical data from database contributed to the majority of the slowdown. This problem
can be alleviated in the future by performing these calculations in advance and storing them statically, only
updating incrementally as more data is collected.

18

Bagle IRCbot Mybot Sdbot
ByDestinationα,τ,ρ(Λ,Λpast) μ 197.89s 598.52s 186.28s 186.87s
(line 101) σ 412.46s 345.39s 393.59s 391.53s
ByPayloadδEd(Λsim

past,Λ
susp
i , false) = 0 μ 222.58s 90.87s 268.25s 96.34s

(line 106) σ 572.68s 236.20s 635.96s 287.19s
ByPayloadδEd(Λsusp

i ,Λsusp
i , true) > 0.2, and μ 1.25s 6.91s 1.53s 1.38s

ByPlatform(Λi) > 0.5 σ 1.62s 2.95s 1.80s 1.79s
(line 107 and line 108)

Total run time μ 421.73s 306.78s 268.25s 284.60s
σ 975.75s 678.47s 635.96s 672.74s

Size of SuspiciousSubnets μ 515.17 3652.00 474.52 475.47
σ 309.32 456.39 309.41 309.43

Number of internal hosts contacting SuspiciousSubnets
in Λ μ 982.94 1428.00 974.64 974.52

in Λpast μ 2273.58 4900.00 2165.12 2165.23

Table 2: Run time of each phase in seconds (s) of algorithm in Figure 1 and statistics of factors impacting
performance (μ = mean, σ = std. dev.)

19

